iScore: A ML-Based Scoring Function forde novoDrug Discovery

Author:

Mahdizadeh Sayyed JalilORCID,Eriksson Leif A.ORCID

Abstract

AbstractIn the quest for acceleratingde novodrug discovery, the development of efficient and accurate scoring functions represents a fundamental challenge. This study introduces iScore, a novel machine learning (ML)-based scoring function designed to predict the binding affinity of protein-ligand complexes with remarkable speed and precision. Uniquely, iScore circumvents the conventional reliance on explicit knowledge of protein-ligand interactions and full picture of atomic contacts, instead leveraging a set of ligand and binding pocket descriptors to evaluate binding affinity. This approach avoids the inefficient and slow conformational sampling stage, thereby enabling the rapid screening of ultra-huge molecular libraries, a crucial advancement given the practically infinite dimensions of chemical space. iScore was rigorously trained and validated using the PDBbind 2020 refined set, CASF 2016, and CSAR NRC-HiQ Set1/2, employing three distinct ML methodologies: Deep Neural Network (iScore-DNN), Random Forest (iScore-RF), and eXtreme Gradient Boosting (iScore-XGB). A hybrid model, iScore-Hybrid, was subsequently developed to incorporate the strengths of these individual base learners. The hybrid model demonstrated a Pearson correlation coefficient (R) of 0.78 and a root mean square error (RMSE) of 1.23 in cross-validation, outperforming the individual base learners and establishing new benchmarks for scoring power (R= 0.814, RMSE=1.34), ranking power (ρ= 0.705), and screening power (success rate at top 10% = 73.7%).

Publisher

Cold Spring Harbor Laboratory

Reference27 articles.

1. Morris, G. M. ; Lim-Wilby, M. , Molecular docking. Molecular modeling of proteins 2008, 365–382.

2. Comparative Evaluation of 11 Scoring Functions for Molecular Docking

3. Small molecule docking and scoring;Rev. Comput. Chem,2001

4. Comparative assessment of scoring functions: the CASF-2016 update;J. Chem. Inf. Model,2018

5. Ligand Pose and Orientational Sampling in Molecular Docking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3