CN-model: A dynamic model for the coupled carbon and nitrogen cycles in terrestrial ecosystems

Author:

Stocker Benjamin D.ORCID,Prentice I. ColinORCID

Abstract

AbstractReducing uncertainty in carbon cycle projections relies on reliable representations of interactions between the carbon and nutrient cycles. Here, we build on a set of principles and hypotheses, funded in established theoretical understanding and supported by empirical evidence, to formulate and implement a dynamic model of carbon-nitrogen cycle (C-N) interactions in terrestrial ecosystems. The model combines a representation of photosynthetic acclimation to the atmospheric environment with implications for canopy and leaf N, a representation of functional balance for modelling C allocation and growth different tissues, and a representation of plant N uptake based on a first principles-informed, simplified description of solute transport in the soil. Here, we provide a comprehensive description of the model and its implementation and demonstrate the stability and functionality of the model for simulating seasonal variations of ecosystem C and N fluxes and pools. This may provide a way forward for representing key ecosystem processes related to C and N cycling based on established theoretical concepts with strong empirical support.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3