DeepRBP: A novel deep neural network for inferring splicing regulation

Author:

Sancho JosebaORCID,Ferrer-Bonsoms Juan A.ORCID,Olaverri-Mendizabal DanelORCID,Carazo FernandoORCID,Valcárcel Luis V.ORCID,Ochoa IdoiaORCID

Abstract

AbstractMotivationAlternative splicing plays a pivotal role in various biological processes. In the context of cancer, aberrant splicing patterns can lead to disease progression and treatment resistance. Understanding the regulatory mechanisms underlying alternative splicing is crucial for elucidating disease mechanisms and identifying potential therapeutic targets.ResultsWe present DeepRBP, a deep learning (DL) based framework to identify potential RNA-binding proteins (RBP)-Gene regulation pairs for further in-vitro validation. DeepRBP is composed of a DL model that predicts transcript abundance given RBP and gene expression data coupled with an explainability module that computes informative RBP-Gene scores. We show that the proposed framework is able to identify known RBP-Gene regulations, demonstrating its applicability to identify new ones.Availability and ImplementationDeepRBP is implemented in PyTorch, and all the code and material used in this work is available athttps://github.com/ML4BM-Lab/DeepRBP.Contactiochoal@unav.esSupplementary informationSupplementary data are available atBioinformaticsonline.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Akiba, T. et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2623–2631.

2. Bergstra, J. et al. (2011). Algorithms for hyper-parameter optimization. Advances in neural information processing systems, 24.

3. Bergstra, J. et al. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International conference on machine learning, pages 115–123. PMLR.

4. Linear models enable powerful differential activity analysis in massively parallel reporter assays

5. Opportunities and challenges in long-read sequencing data analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3