A morphology and secretome map of pyroptosis

Author:

Lippincott Michael J.ORCID,Tomkinson JennaORCID,Bunten DaveORCID,Mohammadi MiladORCID,Kastl Johanna,Knop Johannes,Schwandner Ralf,Huang Jiamin,Ongo Grant,Robichaud NathanielORCID,Dagher Milad,Tsuboi Masafumi,Basualto-Alarcón Carla,Way Gregory P.ORCID

Abstract

AbstractPyroptosis represents one type of Programmed Cell Death (PCD). It is a form of inflammatory cell death that is canonically defined by caspase-1 cleavage and Gasdermin-mediated membrane pore formation. Caspase-1 initiates the inflammatory response (through IL-1β processing), and the N-terminal cleaved fragment of Gasdermin D polymerizes at the cell periphery forming pores to secrete pro-inflammatory markers. Cell morphology also changes in pyroptosis, with nuclear condensation and membrane rupture. However, recent research challenges canon, revealing a more complex secretome and morphological response in pyroptosis, including overlapping molecular characterization with other forms of cell death, such as apoptosis. Here, we take a multimodal, systems biology approach to characterize pyroptosis. We treated human Peripheral Blood Mononuclear Cells (PBMCs) with 36 different combinations of stimuli to induce pyroptosis or apoptosis. We applied both secretome profiling (nELISA) and high-content fluorescence microscopy (Cell Painting). To differentiate apoptotic, pyroptotic and healthy cells, we used canonical secretome markers and modified our Cell Painting assay to mark the N-terminus of Gasdermin-D. We trained hundreds of machine learning (ML) models to reveal intricate morphology signatures of pyroptosis that implicate changes across many different organelles and predict levels of many pro-inflammatory markers. Overall, our analysis provides a detailed map of pyroptosis which includes overlapping and distinct connections with apoptosis revealed through a mechanistic link between cell morphology and cell secretome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3