The cytoplasm of living cells can sustain transient and steady intracellular pressure gradients

Author:

Malboubi Majid,Esteki Mohammad Hadi,Korsak Lulu I T.,Petrie Ryan J.,Moeendarbary Emad,Charras Guillaume

Abstract

SummaryUnderstanding the physical basis of cellular shape change in response to both internal and external mechanical stresses requires understanding cytoplasmic rheology. At subsecond time-scales and micron length-scales, cells behave as fluid-filled sponges in which shape changes necessitate intracellular fluid redistribution. However, whether these cytoplasmic poroelastic properties play an important role in cellular mechanical response over length-scales and time-scales relevant to cell physiology remains unclear. Here, we investigated whether and how a localised deformation of the cell surface gives rise to transient intracellular flows spanning several microns and lasting seconds. Next, we show that pressure gradients induced in the cytoplasm can be sustained over several minutes. We found that stable pressure gradients can arise from the combination of cytoplasmic poroelasticity and water flows across the membrane. Overall our data indicate that intracellular cytosolic flows and pressure gradients may play a much greater role than currently appreciated, acting over time- and length-scales relevant to mechanotransduction and cell migration, signifying that poroelastic properties need to be accounted for in models and states of the cell.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3