Order of amino acid recruitment into the genetic code resolved by Last Universal Common Ancestor’s protein domains

Author:

Wehbi SawsanORCID,Wheeler AndrewORCID,Morel BenoitORCID,Minh Bui QuangORCID,Lauretta Dante S.ORCID,Masel JoannaORCID

Abstract

AbstractThe current “consensus” order in which amino acids were added to the genetic code is based on potentially biased criteria such as absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. Even if inferred perfectly, abiotic abundance might not reflect abundance in the organisms in which the genetic code evolved. Here, we instead exploit the fact that proteins that emerged prior to the genetic code’s completion are likely enriched in early amino acids and depleted in late amino acids. We identify the most ancient protein-coding sequences born prior to the archaeal-bacterial split. Amino acid usage in protein sequences whose ancestors date back to a single homolog in the Last Universal Common Ancestor (LUCA) largely matches the consensus order. However, our findings indicate that metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Surprisingly, even more ancient protein sequences — those that had already diversified into multiple distinct copies in LUCA — show a different pattern to single copy LUCA sequences: significantly less depleted in the late amino acids tryptophan and tyrosine, and enriched rather than depleted in phenylalanine. This is compatible with at least some of these sequences predating the current genetic code. Their distinct enrichment patterns thus provide hints about earlier, alternative genetic codes.SignificanceThe order in which the amino acids were added to the genetic code was previously inferred from forty metrics. Many of these reflect abiotic abundance on ancient Earth. However, the abundances that matter are those within primitive cells that already had sophisticated RNA and perhaps peptide metabolism. Here we directly infer the order of recruitment from the relative amino acid frequencies of ancient protein sequences. Metal-dependent catalysis and a sulfur-rich environment shaped the early code, with implications for our understanding of early life and hence our search for life elsewhere in the universe.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3