Pinging the Hidden Attentional Priority Map: Suppression Needs Attention

Author:

Huang ChangrunORCID,van Moorselaar DirkORCID,Foster Joshua J.ORCID,Donk MiekeORCID,Theeuwes JanORCID

Abstract

AbstractAttentional capture by an irrelevant salient distractor is attenuated when the distractor is presented more frequently in one location compared to other locations, suggesting that people learn to suppress an irrelevant salient location. However, to date it is unclear whether this suppression is proactive, applied before attention has been directed to the distractor location, or reactive, occurring after attention has been directed to that specific location. The aim of the present study is to investigate how suppression is accomplished by using the pinging technique which allows one to probe how attention is distributed across the visual field prior to the presentation of the search display. In an EEG experiment, participants performed a visual search task wherein they were tasked with identifying a shape singleton in the presence of an irrelevant color singleton. Compared to all other locations, this color singleton appeared more frequently at a specific location, which was termed the high-probability location. Prior to the search task, we introduced a continuous recall spatial memory task to reveal the hidden attentional priority map. Participants had to memorize the location of a memory cue continuously and report this location after the visual search task. Critically, after the presentation of the memory cue but before the onset of the search display, a neutral placeholder display was presented to probe how hidden priority map is reconfigured by the learned distractor suppression. Behaviorally, there was clear evidence that the high-probability location was suppressed, as search was more efficient when the distractor appeared at this location. To examine the priority map prior to search, we adopted an inverted encoding approach to reconstruct the tuning profile of the memorized position in the spatial memory task. Inverted modeling resulted in reliable tuning profiles during memory maintenance that gradually decayed and that were revived again by the onset of a neutral placeholder display preceding search. After the onset of the placeholders, the tuning profile observed was characterized by a spatial gradient centered over the high-probability location, with tuning being most pronounced at the-to-be suppressed location. This finding suggests that while learned suppression is initiated prior to search display onset, it is preceded by an initial phase of spatial selection, which is in line with a reactive suppression account. Together these results further our understanding of the mechanism of spatial distractor suppression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3