Abstract
AbstractThe human genome contains millions of retrotransposons, several of which could become active due to somatic mutations having phenotypic consequences, including disease. However, it is not thoroughly understood how nucleotide changes in retrotransposons affect their jumping activity. Here, we developed a novel massively parallel jumping assay (MPJA) that can test the jumping potential of thousands of transposonsen masse. We generated nucleotide variant library of selected fourAluretrotransposons containing 165,087 different haplotypes and tested them for their jumping ability using MPJA. We found 66,821 unique jumping haplotypes, allowing us to pinpoint domains and variants vital for transposition. Mapping these variants to theAlu-RNA secondary structure revealed stem-loop features that contribute to jumping potential. Combined, our work provides a novel high-throughput assay that assesses the ability of retrotransposons to jump and identifies nucleotide changes that have the potential to reactivate them in the human genome.
Publisher
Cold Spring Harbor Laboratory