A novel method to guide biomarker combinations to optimize the sensitivity

Author:

Ghasem Seyyed MahmoodORCID,Fahrmann Johannes F.,Hanash Samir,Do Kim-Anh,Long James P.,Irajizad Ehsan

Abstract

AbstractLogistic regression has demonstrated its utility in classifying binary labeled datasets through the maximum likelihood approach. However, in numerous biological and clinical contexts, the aim is often to determine coefficients that yield the highest sensitivity at the pre-specified specificity or vice versa. Therefore, the application of logistic regression is limited in such settings. To this end, we have developed an improved regression framework, SMAGS, for binary classification that, for a given specificity, finds the linear decision rule that yields the maximum sensitivity. Furthermore, we employed the method for feature selection to find the features that are satisfying the sensitivity maximization goal. We compared our method with normal logistic regression by applying it to real clinical data as well as synthetic data. In the real application data (colorectal cancer dataset), we found 14% improvement of sensitivity at 98.5% specificity.Availability and implementationSoftware is made available in Python (https://github.com/smahmoodghasemi/SMAGS)

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3