Unique cortical and subcortical activation patterns for different conspecific calls in marmosets

Author:

Jafari AzadehORCID,Dureux AudreyORCID,Zanini AlessandroORCID,Menon Ravi S.ORCID,Gilbert Kyle M.ORCID,Everling StefanORCID

Abstract

AbstractThe common marmoset (Callithrix jacchus) is known for its highly vocal nature, displaying a diverse range of different calls. Functional imaging in marmosets has shown that the processing of conspecific calls activates a brain network that includes fronto-temporal cortical and subcortical areas. It is currently unknown whether different call types activate the same or different networks. Here we show unique activation patterns for different calls. Nine adult marmosets were exposed to four common vocalizations (phee, chatter, trill, and twitter), and their brain responses were recorded using event-related fMRI at 9.4T. We found robust activations in the auditory cortices, encompassing core, belt, and parabelt regions, and in subcortical areas like the inferior colliculus, medial geniculate nucleus, and amygdala in response to these conspecific calls. Different neural activation patterns were observed among the vocalizations, suggesting vocalization-specific neural processing. Phee and twitter calls, often used over long distances, activated similar neural circuits, whereas trill and chatter, associated with closer social interactions, demonstrated a closer resemblance in their activation patterns. Our findings also indicate the involvement of the cerebellum and medial prefrontal cortex (mPFC) in distinguishing particular vocalizations from others.Significance StatementThis study investigates the neural processing of vocal communications in the common marmoset (Callithrix jacchus), a species with a diverse vocal repertoire. Utilizing event-related fMRI at 9.4T, we demonstrate that different marmoset calls (phee, chatter, trill, and twitter) elicit distinct activation patterns in the brain, challenging the notion of a uniform neural network for all vocalizations. Each call type distinctly engages various regions within the auditory cortices and subcortical areas, reflecting the complexity and context-specific nature of primate communication. These findings offer insights into the evolutionary mechanisms of primate vocal perception and provide a foundation for understanding the origins of human speech and language processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3