Brain age prediction and deviations from normative trajectories in the neonatal connectome

Author:

Sun HuiliORCID,Mehta Saloni,Khaitova Milana,Cheng Bin,Hao Xuejun,Spann Marisa,Scheinost Dustin

Abstract

AbstractStructural and functional connectomes undergo rapid changes during the third trimester and the first month of postnatal life. Despite progress, our understanding of the developmental trajectories of the connectome in the perinatal period remains incomplete. Brain age prediction uses machine learning to estimate the brain’s maturity relative to normative data. The difference between the individual’s predicted and chronological age—or brain age gap (BAG)—represents the deviation from these normative trajectories. Here, we assess brain age prediction and BAGs using structural and functional connectomes for infants in the first month of life. We used resting-state fMRI and DTI data from 611 infants (174 preterm; 437 term) from the Developing Human Connectome Project (dHCP) and connectome-based predictive modeling to predict postmenstrual age (PMA). Structural and functional connectomes accurately predicted PMA for term and preterm infants. Predicted ages from each modality were correlated. At the network level, nearly all canonical brain networks—even putatively later developing ones—generated accurate PMA prediction. Additionally, BAGs were associated with perinatal exposures and toddler behavioral outcomes. Overall, our results underscore the importance of normative modeling and deviations from these models during the perinatal period.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3