A combination of major histocompatibility complex (MHC) I overexpression and type I interferon induce mitochondrial dysfunction in human skeletal myoblasts

Author:

Thoma Anastasia,Bond Holly L,Akter-Miah Tania,Al-Shanti Nasser,Degens Hans,Pekovic-Vaughan Vanja,Lightfoot Adam PORCID

Abstract

ABSTRACTThe overexpression of major histocompatibility complex (MHC) I on the surface of muscle fibres is a characteristic hallmark of the idiopathic inflammatory myopathies (IIMs), collectively termed myositis. Alongside MHC-I overexpression, sub-types of myositis, display a distinct type I interferon (IFN) signature. This study examined the combinational effects of elevated MHC-I and type I IFNs (IFNα/β) on mitochondrial function, as mitochondrial dysfunction is often seen in IIMs. Human skeletal muscle myoblasts were transfected with an MHC-I isoform using the mammalian HLA-A2/Kbvector. Mitochondrial respiration, mitochondrial membrane potential, and reactive oxygen/nitrogen species generation were assessed with or without IFNα and IFNβ. We show that MHC-I overexpression in human skeletal muscle myoblasts led to decreased basal glycolysis and mitochondrial respiration, cellular spare respiratory capacity, ATP-linked respiration, and an increased proton leak, which were all exaggerated by type I IFNs. Mitochondrial membrane depolarisation was induced by MHC-I overexpression both in absence and presence of type I IFNs. Human myoblasts overexpressing MHC-I showed elevated nitric oxide generation that was abolished when combined with IFN. MHC-I on its own did not result in an increased ROS production, but IFN on their own, or combined with MHC-I overexpression did induce elevated ROS generation. We present new evidence that MHC-I overexpression and type I IFNs aggravate the effects each has on mitochondrial function in human skeletal muscle cells, providing novel insights into their mechanisms of action and suggesting important implications in the further study of myositis pathogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3