Characterization of spike processing and entry mechanisms of seasonal human coronaviruses NL63, 229E and HKU1

Author:

Neerukonda Sabari Nath,Vassell Russell,Lusvarghi Sabrina,Liu ShufengORCID,Akue Adovi,KuKuruga Mark,Wang Tony T.,Weiss Carol DORCID,Wang WeiORCID

Abstract

AbstractAlthough much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the details of entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we established that 293T cell lines that stably express angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2) support high level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively. Our results showed that entry of HCoV-NL63, -229E and -HKU1 pseudoviruses is sensitive to endosomal acidification inhibitors (chloroquine and NH4Cl), indicating virus entry via the endocytosis route. Although HCoV-HKU1 pseudovirus infection requires TMPRSS2 expression on cell surface, endocytosis-mediated HCoV-HKU1 entry requires the serine protease domain but not the serine protease activity of TMPRSS2. We also show that amino acids in the predicted S1/S2 junctions of spike proteins of HCoV-NL63, and - 229E are essential for optimal entry but non-essential for spike-mediated entry of HCoV-HKU1. Our findings provide insights into entry mechanism of seasonal HCoVs that may support the development of novel treatment strategies.ImportanceDetails of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain to be fully explored. To investigate the entry of HCoV-NL63, -229E and -HKU1 CoVs, we employed 293T cells that stably express angiotensin converting enzyme (ACE2) aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2) to study entry mechanisms of pseudoviruses bearing spike proteins of HCoV-NL63, -229E and - HKU1 respectively. Our results provide new insights into the predicted S1/S2 subunit junctions, cellular receptor, and protease requirements for seasonal HCoV pseudovirus entry via endocytic route and may support the development of novel treatment strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3