Dopaminergic inhibition of the inwardly rectifying potassium current in direct pathway medium spiny neurons in normal and parkinsonian striatum

Author:

Wang Qian,Wang Yuhan,Liao Francesca-Fang,Zhou Fu-Ming

Abstract

AbstractDespite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel (Kir) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl2). In behaving parkinsonian mice, BaCl2microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3