Predictive modeling of microbial data with interaction effects

Author:

Stadler MaraORCID,Bien Jacob,Müller Christian L.

Abstract

AbstractMicrobial interactions are of fundamental importance for the functioning and the maintenance of microbial communities. Deciphering these interactions from observational data or controlled lab experiments remains a formidable challenge due to their context-dependent nature, i.e., their dependence on (a)biotic factors, host characteristics, and overall community composition. Here, we present a statistical regression framework for microbial data that allows the inclusion and parsimonious estimation of species interaction effects for an outcome of interest. We adapt the penalized quadratic interaction model to accommodate common microbial data types as predictors, including microbial presence-absence data, relative (or compositional) abundance data from microbiome surveys, and quantitative (absolute abundance) microbiome data. We study the effect of including hierarchical interaction constraints and stability-based model selection on model performance and propose novel interaction model formulations for compositional data. To illustrate our framework’s versatility, we consider prediction tasks across a wide range of microbial datasets and ecosystems, including metabolite production in model communities in designed experiments and environmental covariate prediction from marine microbiome data. While we generally observe superior predictive performance of our interaction models, we also assess limits of these models in presence of extreme data sparsity and with respect to data type. On a large-scale gut microbiome cohort data, we identify sparse family-level interaction models that accurately predict the abundance of antimicrobial resistance genes, enabling the formulation of novel biological hypotheses about microbial community interactions and antimicrobial resistance.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. “What is microbial community ecology?;In: The ISME journal,2009

2. “Cross-feeding in the gut microbiome: Ecology and mechanisms;In: Cell Host & Microbe,2023

3. “Microbial interactions: ecology in a molecular perspective;In: brazilian journal of microbiology,2016

4. “A clarification of interactions in ecological systems;In: Bioscience,1979

5. “Microbial interactions: from networks to models;In: Nature Reviews Microbiology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3