Abstract
AbstractMost computational models of neurons assume constant ion concentrations, disregarding the effects of changing ion concentrations on neuronal activity. Among the models that do incorporate ion concentration dynamics, shortcuts are often made that sacrifice biophysical consistency, such as neglecting the effects of ionic diffusion on electrical potentials or the effects of electric drift on ion concentrations. A subset of models with ion concentration dynamics, often referred to as electrodiffusive models, account for ion concentration dynamics in a way that ensures a biophysical consistent relationship between ion concentrations, electric charge, and electrical potentials. These models include compartmental single-cell models, geometrically explicit models, and domain-type models, but none that model neuronal network dynamics. To address this gap, we present an electrodiffusive network model with multicompartmental neurons and synaptic connections, which we believe is the first compartmentalized network model to account for intra- and extracellular ion concentration dynamics in a biophysically consistent way. The model comprises an arbitrary number of “units,” each divided into three domains representing a neuron, glia, and extracellular space. Each domain is further subdivided into a somatic and dendritic layer. Unlike conventional models which focus primarily on neuronal spiking patterns, our model predicts intra- and extracellular ion concentrations (Na+, K+, Cl−, and Ca2+), electrical potentials, and volume fractions. A unique feature of the model is that it captures ephaptic effects, both electric and ionic. In this paper, we show how this leads to interesting behavior in the network. First, we demonstrate how changing ion concentrations can affect the synaptic strengths. Then, we show how ionic ephaptic coupling can lead to spontaneous firing in neurons that do not receive any synaptic or external input. Lastly, we explore the effects of having glia in the network and demonstrate how a strongly coupled glial syncytium can prevent neuronal depolarization blocks.Author summaryNeurons communicate using electrical signals called action potentials. To create these signals, sodium ions must flow into the cells and potassium ions must flow out. This transmembrane flow requires a concentration difference across the neuronal membrane, which the brain works continuously to maintain. When scientists build mathematical models of neurons, they often apply the simplifying assumption that these ion concentration differences remain constant over time. This assumption works well for many scenarios, but not all. For instance, during events like stroke or epilepsy, the ion concentrations can change dramatically, affecting how neurons behave. Moreover, recent literature suggests that changing ion concentrations also play an important role in normal brain function. To study these scenarios, we need models that can dynamically track changes in ion concentrations. The neuroscience community currently lacks a computational model describing the effects of ion concentration dynamics on neuronal networks, while maintaining a biophysical consistent relationship between ion concentrations and electrical potentials. To address the need for such a model, we have developed a neuronal network model that predicts changes in both intra- and extracellular ion concentrations, electrical potentials, and volumes in a biophysically consistent way.
Publisher
Cold Spring Harbor Laboratory