Regulation of ROP GTPase cycling between active/inactive states is essential for vegetative organogenesis inMarchantia polymorpha

Author:

Sakai YuukiORCID,Ueno Aki,Yonetsuka Hiroki,Goh TatsuakiORCID,Kato HirotakaORCID,Kondo YukiORCID,Fukaki HidehiroORCID,Ishizaki KimitsuneORCID

Abstract

Rho/Rac of plant (ROP) GTPases are a plant-specific subfamily of Rho small GTP-binding proteins that function as molecular switches by being converted to the active state by guanine nucleotide exchange factors (GEFs) and to the inactive state by GTPase-activating proteins (GAPs). The bryophyteMarchantia polymorphacontains single-copy genes encoding ROP (MpROP), two types of GEFs (ROPGEF and SPIKE (SPK)), and two types of GAPs (ROPGAP and ROP enhancer (REN)). MpROP regulates the development of various organs, including the air chambers, rhizoids, and clonal propagule gemmae. While the sole PRONE-type ROPGEF, KARAPPO (MpKAR), plays an essential role in gemma initiation, little is known about thein-plantafunctions of other ROP regulatory factors inM. polymorpha. In this study, we focused on the functions of two types of GAPs: MpROPGAP and MpREN. Loss-of-function Mprengesingle mutants showed pleiotropic defects in thallus growth, air chamber formation, rhizoid tip growth, and gemma development, whereas MpROPGAP mutants showed no detectable abnormalities. Despite the distinctive domain structures of MpROPGAP and MpREN, MpropgapgeMprengedouble mutants showed more severe phenotypes than the Mprengesingle mutants, suggesting redundant functions of MpROPGAP and MpREN in gametophyte organogenesis. Interestingly, overexpression of MpROPGAP, MpREN, anddominant-negativeMpROP(MpROPDN) resulted in similar air chamber defects, as well as loss-of-function of MpRENand MpROPGAPand overexpression ofconstitutively activeMpROP(MpROPCA), suggesting importance of activation/inactivation cycling (or balancing) of MpROP. Furthermore, we proved the contributions of the sole DOCK family GEF, MpSPK, to MpROP-regulated air chamber formation. In summary, our results demonstrate a significant role of the two GAPs in the development of various organs and that the two GEFs are responsible for organogenesis through the control of the MpROP active/inactive cycle in the vegetative growth ofM. polymorpha.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3