Repetitive transcranial magnetic stimulation to the motor cortex leads to a sequential increase in phase synchronization and power of TMS-evoked electroencephalographic recordings

Author:

Martino Enrico De,Casali Adenauer Girardi,Nascimento Couto Bruno Andry,Graven-Nielsen Thomas,Ciampi de Andrade Daniel

Abstract

ABSTRACTBackgroundHigh-frequency (10 Hz) repetitive transcranial magnetic stimulation (rTMS) to the primary motor cortex (M1) is used to treat several neuropsychiatric disorders, but its main mechanism of action remains unclear.ObjectiveTo probe four cortical hubs used for rTMS (M1; dorsolateral-prefrontal cortex, DLPFC; anterior cingulate cortex, ACC; posterosuperior insula, PSI) with TMS coupled with high-density electroencephalography (TMS-EEG) and measure cortical excitability and oscillatory dynamics before and after active and sham rTMS to M1.MethodsBefore and immediately after active or sham M1-rTMS (15 min, 3,000 pulses at 10 Hz), single-pulse TMS evoked EEG were recorded at the four targets in 20 healthy individuals. Measures of cortical excitability and oscillatory dynamics were extracted at the main frequency bands (α [8-13 Hz], low-β [14-24 Hz], high-β [25-35 Hz]).ResultsComparing active and sham M1 rTMS, M1 TMS-EEG demonstrated an increase in high-β synchronization in electrodes around M1 stimulation area and remotely in the contralateral hemisphere (p=0.026). The increase in high-β synchronization (48-83 ms after TMS-EEG stimulation) was succeeded by an enhancement in low-β power (86-144 ms after TMS-EEG stimulation) both locally and in the contralateral hemisphere (p=0.006). No significant differences were observed in TMS-EEG responses probing DLPFC, ACC, or PSI.ConclusionM1-rTMS engaged a sequence of enhanced phase synchronization, followed by an increase in power occurring within M1, that spread to remote areas and was measurable after the end of the stimulation session. These results are relevant to understanding the M1 neuroplastic effects of rTMS and associated changes in cortical activity dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3