Estimating Rates of Change to Interpret Quantitative Wastewater Surveillance of Disease Trends

Author:

Holcomb David A.ORCID,Christensen ArielORCID,Hoffman KellyORCID,Lee AllisonORCID,Blackwood A. DeneneORCID,Clerkin ThomasORCID,Gallard-Góngora JavierORCID,Harris AngelaORCID,Kotlarz NadineORCID,Mitasova HelenaORCID,Reckling StacieORCID,de los Reyes Francis L.ORCID,Stewart Jill R.ORCID,Guidry Virginia T.,Noble Rachel T.ORCID,Serre Marc L.ORCID,Garcia Tanya P.ORCID,Engel Lawrence S.ORCID

Abstract

AbstractBackgroundWastewater monitoring data can be used to estimate disease trends to inform public health responses. One commonly estimated metric is the rate of change in pathogen quantity, which typically correlates with clinical surveillance in retrospective analyses. However, the accuracy of rate of change estimation approaches has not previously been evaluated.ObjectivesWe assessed the performance of approaches for estimating rates of change in wastewater pathogen loads by generating synthetic wastewater time series data for which rates of change were known. Each approach was also evaluated on real-world data.MethodsSmooth trends and their first derivatives were jointly sampled from Gaussian processes (GP) and independent errors were added to generate synthetic viral load measurements; the range hyperparameter and error variance were varied to produce nine simulation scenarios representing different potential disease patterns. The directions and magnitudes of the rate of change estimates from four estimation approaches (two established and two developed in this work) were compared to the GP first derivative to evaluate classification and quantitative accuracy. Each approach was also implemented for public SARS-CoV-2 wastewater monitoring data collected January 2021 – May 2023 at 25 sites in North Carolina, USA.ResultsAll four approaches inconsistently identified the correct direction of the trend given by the sign of the GP first derivative. Across all nine simulated disease patterns, between a quarter and a half of all estimates indicated the wrong trend direction, regardless of estimation approach. The proportion of trends classified as plateaus (statistically indistinguishable from zero) for the North Carolina SARS-CoV-2 data varied considerably by estimation method but not by site.DiscussionOur results suggest that wastewater measurements alone might not provide sufficient data to reliably track disease trends in real-time. Instead, wastewater viral loads could be combined with additional public health surveillance data to improve predictions of other outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3