Activation of hypoactive parvalbumin-positive fast-spiking interneuron restores dentate inhibition to prevent epileptiform activity in the mouse intrahippocampal kainate model of temporal lobe epilepsy

Author:

Lee Sang-HunORCID,Kang Young-Jin,Smith Bret N.ORCID

Abstract

AbstractParvalbumin-positive (PV+) GABAergic interneurons in the dentate gyrus provide powerful perisomatic inhibition of dentate granule cells (DGCs) to prevent overexcitation and maintain the stability of dentate gyrus circuits. Most dentate PV+ interneurons survive status epilepticus, but surviving PV+ interneuron mediated inhibition is compromised in the dentate gyrus shortly after status epilepticus, contributing to epileptogenesis in temporal lobe epilepsy. It is uncertain whether the impaired activity of dentate PV+ interneurons recovers at later times or if it continues for months following status epilepticus. The development of compensatory modifications related to PV+ interneuron circuits in the months following status epilepticus is unknown, although reduced dentate GABAergic inhibition persists long after status epilepticus. We employed PV immunostaining and whole-cell patch-clamp recordings from dentate PV+ interneurons and DGCs in slices from male and female sham controls and intrahippocampal kainate (IHK) treated mice that developed spontaneous seizures months after status epilepticus to study epilepsy-associated changes in dentate PV+ interneuron circuits. We found that the number of dentate PV+ cells was reduced in IHK treated mice. Electrical recordings showed that: 1) Action potential firing rates of dentate PV+ interneurons were reduced in IHK treated mice up to four months after status epilepticus; 2) Spontaneous inhibitory postsynaptic currents (sIPSCs) in DGCs exhibited reduced frequency but increased amplitude in IHK treated mice; and 3) The amplitude of evoked IPSCs in DGCs by optogenetic activation of dentate PV+ cells was upregulated without changes in short-term plasticity. Video-EEG recordings revealed that IHK treated mice showed spontaneous epileptiform activity in the dentate gyrus and that chemogenetic activation of PV+ interneurons abolished the epileptiform activity. Our results suggest not only that the compensatory changes in PV+ interneuron circuits develop after IHK treatment, but also that increased PV+ interneuron mediated inhibition in the dentate gyrus may compensate for cell loss and reduced intrinsic excitability of dentate PV+ interneurons to stop seizures in temporal lobe epilepsy.HighlightsReduced number of dentate PV+ interneurons in TLE micePersistently reduced action potential firing rates of dentate PV+ interneurons in TLE miceEnhanced amplitude but decreased frequency of spontaneous IPSCs in the dentate gyrus in TLE miceIncreased amplitude of evoked IPSCs mediated by dentate PV+ interneurons in TLE miceChemogenetic activation of PV+ interneurons prevents epileptiform activity in TLE mice

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3