Exploring the Influence of Pore Shape on Conductance and Permeation

Author:

Seiferth DavidORCID,Biggin Philip C.ORCID

Abstract

AbstractThere are increasing numbers of ion channel structures featuring heteromeric subunit assembly, exemplified by synaptic α1βBGlycine and α4β2 Nicotinic receptors. These structures exhibit inherent pore asymmetry, but the relevance of this to function is unknown. Furthermore, molecular dynamics simulations performed on symmetrical homomeric channels often leads to thermal distortion whereby conformations of the resulting ensemble are also asymmetrical. When functionally annotating ion channels, researchers often rely on minimal constrictions determined via radius-profile calculations performed with computer programs, such as HOLE or CHAP, coupled with an assessment of pore hydrophobicity. However, such tools typically employ spherical probe particles, limiting their ability to accurately capture pore asymmetry. Here, we introduce an algorithm that employs ellipsoidal probe particles, enabling a more comprehensive representation of the pore geometry. Our analysis reveals that the use of non-spherical ellipsoids for pore characterization, provides a more accurate and easily interpretable depiction of conductance. To quantify the implications of pore asymmetry on conductance, we systematically investigated carbon nanotubes (CNTs) with varying degrees of pore asymmetry as model systems. The conductance through these channels shows surprising effects that would otherwise not be predicted with spherical probes. The results have broad implications not only for the functional annotation of biological ion channels, but also for the design of synthetic channel systems for use in areas such as water filtration. Furthermore, we make use of the more accurate characterization of channel pores to refine a physical conductance model to obtain a heuristic estimate for single channel conductance. The code is freely available, obtainable as pip-installable python package and provided as a webservice.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3