Dynamic Formation of the Protein-Lipid Pre-fusion Complex

Author:

Bykhovskaia Maria

Abstract

AbstractSynaptic vesicles (SVs) fuse with the presynaptic membrane (PM) to release neuronal transmitters. The SV protein Synaptotagmin 1 (Syt1) serves as a Ca2+sensor for evoked fusion. Syt1 is thought to trigger fusion by penetrating into PM upon Ca2+binding, however the mechanistic detail of this process is still debated. Syt1 interacts with the SNARE complex, a coiled-coil four-helical bundle that enables the SV-PM attachment. The SNARE-associated protein Complexin (Cpx) promotes the Ca2+-dependent fusion, possibly interacting with Syt1. We employed all-atom molecular dynamics (MD) to investigate the formation of the Syt1-SNARE-Cpx complex interacting with the lipid bilayers of PM and SV. Our simulations demonstrated that the PM-Syt1-SNARE-Cpx complex can transition to a “dead-end” state, wherein Syt1 attaches tightly to PM but does not immerse into it, as opposed to a pre-fusion state, which has the tips of the Ca2+-bound C2 domains of Syt1 inserted into PM. Our simulations unraveled the sequence of Syt1 conformational transitions, including the simultaneous Syt1 docking to the SNARE-Cpx bundle and PM, followed by the Ca2+chelation and the penetration of the tips of Syt1 domains into PM, leading to the pre-fusion state of the protein-lipid complex. Importantly, we found that the direct Syt1-Cpx interactions are required to promote these transitions. Thus, we developed the all-atom dynamic model of the conformational transitions that lead to the formation of the pre-fusion PM-Syt1-SNARE-Cpx complex. Our simulations also revealed an alternative “dead-end” state of the protein-lipid complex that can be formed if this pathway is disrupted.Statement of SignificanceNeurons communicate by releasing transmitter molecules. Transmitters are packed in synaptic vesicles (SVs) and released by the fusion of SVs with the presynaptic membrane (PM). This process is regulated by a dynamic complex of fusion proteins, including the coil-coiled SNARE bundle that attaches SV to PM, Synaptotagmin that serves as a Ca2+sensor for the release process, and Complexin that attaches to the SNARE bundle and promotes the Ca2+-dependent release. To understand how these proteins interact dynamically with the lipid bilayers of SV and PM, we employed molecular dynamics, a computational approach that enables simulating the behavior of proteins and lipids at the atomistic resolution. Our simulations enabled us to delineate the stages of the formation of prefusion protein-lipid complex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3