Missing cell types in single-cell references impact deconvolution of bulk data but are detectable

Author:

Ivich Adriana,Davidson Natalie R.,Grieshober Laurie,Li Weishan,Hicks Stephanie C.ORCID,Doherty Jennifer A.,Greene Casey S.ORCID

Abstract

AbstractAdvancements in RNA-sequencing have dramatically expanded our ability to study gene expression profiles of biological samples in bulk tissue and single cells. Deconvolution of bulk data with single-cell references provides the ability to study relative cell-type proportions, but most methods assume a reference is present for every cell type in bulk data. This is not true in all circumstances--cell types can be missing in single-cell profiles for many reasons. In this study, we examine the impact of missing cell types on deconvolution methods. Our experimental designs are simulation-based, using paired single-cell and single-nucleus data, since single-nucleus RNA-sequencing is able to preserve the nucleus of cell types that would otherwise be missing in a single-cell counterpart. These datasets allow us to examine the missing-cell-type phenomenon in deconvolution with realistic proportions. We apply three deconvolution methods that vary from straightforward to state-of-the-art: non-negative least squares, BayesPrism, and CIBERSORTx. We find that the performance of deconvolution methods is influenced by both the number and the similarity of missing cell types, consistent with prior results. Additionally, we find that missing cell-type profiles can be recovered from residuals using a simple non-negative matrix factorization strategy. We expect our simulation strategies and results to provide a starting point for those developing new deconvolution methods and help improve their to better account for the presence of missing cell types. Building off of our findings on simulated data, we then analyzed data from high-grade serous ovarian cancer; a tumor that has regions of highly variable levels of adipocytes dependent on the region from which it is sampled. We observe results consistent with simulation, namely that expression patterns from cell types likely to be missing appear present in residuals. Our results suggests that deconvolution methods should consider the possibility of missing cell types and provide a starting point to address this. Our source code for data simulation and analysis is freely available athttps://github.com/greenelab/pred_missing_celltypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3