Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena

Author:

Amaya Ioanna A.ORCID,Nierhaus TillORCID,Schmidt Timo T.ORCID

Abstract

AbstractThe thalamus has a critical role in the orchestration of cortical activity. Aberrant thalamocortical connectivity occurs together with visual hallucinations in various pathologies and drug-induced states, highlighting the need to better understand how thalamocortical interactions may contribute to hallucinatory phenomena. However, concurring symptoms and physiological changes that occur during psychopathologies and pharmacological interventions make it difficult to distil the specific neural correlates of hallucinatory experiences. Flicker light stimulation (FLS) at 10 Hz reliably and selectively induces transient visual hallucinations in healthy participants. Arrhythmic flicker elicits fewer hallucinatory effects while delivering equal amounts of visual stimulation, together facilitating a well-controlled experimental setup to investigate the neural correlates of visual hallucinations driven by flicker rhythmicity. In this study, we implemented rhythmic and arrhythmic FLS during fMRI scanning to test the elicited changes in cortical activation and thalamocortical functional connectivity. We found that rhythmic FLS elicited stronger activation in higher-order visual cortices compared to arrhythmic control. Consistently, we found that rhythmic flicker selectively increased connectivity between ventroanterior thalamic nuclei and higher-order visual cortices compared to arrhythmic control, which was also found be positively associated with the subjective intensity of visual hallucinatory effects. As these thalamic and cortical areas do not receive primary visual inputs, it suggests that the thalamocortical connectivity changes relate to a higher-order function of the thalamus, such as in the coordination of cortical activity. In sum, we present novel evidence for the role of specific thalamocortical interactions with ventroanterior nuclei within visual hallucinatory experiences. Importantly, this can inform future clinical research into the mechanistic underpinnings of pathologic hallucinations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3