An ultrasound-guided biopsy technique for obtaining supraclavicular brown fat biopsies and preadipocytes

Author:

Andersen Eline S.ORCID,Jespersen Naja Zenius,Henriksen Tora Ida,Pedersen Bente Klarlund,Scheele CamillaORCID,Nielsen Michael BachmannORCID,Nielsen SørenORCID

Abstract

AbstractStudying activated human brown adipose tissue (BAT) in vivo poses challenges due to its intricate anatomical positioning. Through the implementation of an ultrasound-guided biopsy technique, we successfully collected BAT samples from the supraclavicular region of 27 healthy individuals. As a comparative control, subcutaneous white adipose tissue (WAT) was similarly extracted from the same participants. Furthermore, we isolated progenitor cells from four tissue biopsies in both regions, subsequently subjecting them to a 12-day in vitro differentiation protocol following stimulation with 10 µM norepinephrine. To assess the mRNA expression of thermogenic genes within these small tissue samples, we employed a targeted cDNA amplification procedure, followed by conventional quantitative PCR (qPCR). Our study demonstrated that, with further refinement, this biopsy methodology can be used to obtain thermogenic adipose tissue. However, the expression data exhibited considerable diversity, and no statistically significant overall trends emerged for any of the five BAT marker genes (UCP1, PPARGC1A, PRDM16, CIDEA, CITED1), nor for the WAT marker HOXC8. The differentiation capacity of the progenitor cells revealed irregularities, with only three adipocyte cultures (two WAT and one BAT) displaying satisfactory differentiation potential. Remarkably, the differentiated BAT culture displayed a significantly elevated basal UCP mRNA expression level, further induced by 1.7-fold upon stimulation with norepinephrine. In summary, based on the in vitro data, brown adipose samples can be obtained using our ultrasound-guided biopsy technique approach. However, significant refinements are necessary before robust in vivo data can be generated in future intervention studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3