Interactome dynamics during heat stress signal transmission and reception

Author:

Park Sung-Gun,Keller Andrew,Kaiser Nathan K.,Bruce James E.ORCID

Abstract

AbstractAmong evolved molecular mechanisms, cellular stress response to altered environmental conditions to promote survival is among the most fundamental. The presence of stress-induced unfolded or misfolded proteins and molecular registration of these events constitute early steps in cellular stress response. However, what stress-induced changes in protein conformations and protein-protein interactions within cells initiate stress response and how these features are recognized by cellular systems are questions that have remained difficult to answer, requiring new approaches. Quantitativein vivochemical cross-linking coupled with mass spectrometry (qXL-MS) is an emerging technology that provides new insight on protein conformations, protein-protein interactions and how the interactome changes during perturbation within cells, organelles, and even tissues. In this work, qXL-MS and quantitative proteome analyses were applied to identify significant time-dependent interactome changes that occur prior to large-scale proteome abundance remodeling within cells subjected to heat stress. Interactome changes were identified within minutes of applied heat stress, including stress-induced changes in chaperone systems as expected due to altered functional demand. However, global analysis of all interactome changes revealed the largest significant enrichment in the gene ontology molecular function term of RNA binding. This group included more than 100 proteins among multiple components of protein synthesis machinery, including mRNA binding, spliceosomes, and ribosomes. These interactome data provide new conformational insight on the complex relationship that exists between transcription, translation and cellular stress response mechanisms. Moreover, stress-dependent interactome changes suggest that in addition to conformational stabilization of RNA-binding proteins, adaptation of RNA as interacting ligands offers an additional fitness benefit resultant from generally lower RNA thermal stability. As such, RNA ligands also serve as fundamental temperature sensors that signal stress through decreased conformational regulation of their protein partners as was observed in these interactome dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3