Author:
Vaucheret Hervé,Vazquez Franck,Crété Patrice,Bartel David P.
Abstract
MicroRNAs (miRNAs) are endogenous 21–24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs. In hypomorphic ago1 alleles, this compromised miRNA function occurs without a substantial change in miRNA accumulation, whereas in null alleles it is accompanied by a drop in some of the miRNAs. Therefore, AGO1 acts within the Arabidopsis miRNA pathway, probably within the miRNA-programmed RISC, such that the absence of AGO1 destabilizes some of the miRNAs. We also show that targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA. Transgenic plants expressing a mutant AGO1 mRNA with decreased complementarity to miR168 overaccumulate AGO1 mRNA and exhibit developmental defects partially overlapping with those of dcl1, hen1, and hyl1 mutants showing a decrease in miRNA accumulation. miRNA targets overaccumulate in miR168-resistant plants, suggesting that a large excess of AGO1 protein interferes with the function of RISC or sequesters miRNAs or other RISC components. Developmental defects induced by a miR168-resistant AGO1 mRNA can be rescued by a compensatory miRNA that is complementary to the mutant AGO1 mRNA, proving the regulatory relationship between miR168 and its target and opening the way for engineering artificial miRNAs in plants.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
820 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献