Theory on the looping mediated directional-dependent propulsion of transcription factors along DNA

Author:

Murugan R.

Abstract

ABSTRACTWe show that the looping mediated transcription activation by the combinatorial transcription factors (TFs) can be achieved via directional-dependent propulsion, tethered sliding and tethered binding-sliding-unbinding modes. In the propulsion mode, the first arrived TF at the cis-regulatory motifs (CRMs) further recruits other TFs via protein-protein interactions. Such TFs complex has two different types of DNA binding domains (DBDs) viz. DBD1 which forms tight site-specific complex with CRMs via hydrogen bonding network and the promoter specific DBD2s which form nonspecific interactions around CRMs. When the sum of these specific and cumulative nonspecific interactions is sufficient, then the flanking DNA of CRMs will be bent into a circle over the TFs complex. The number of TFs involved in the combinatorial regulation plays critical role here. When the site-specific interactions and the cumulative nonspecific interactions are strong enough to resist the dissociation, then the sliding of DBD2s well within the Onsager radius associated with the DBD2s-DNA interface towards the promoter is the only possible way to release the elastic stress of the bent DNA. The DBD2s form tight synaptosome complex upon finding the promoter via sliding. When the number of TFs is not enough to bend the DNA in to a circle, then tethered sliding or tethered binding-sliding-unbinding modes are the possibilities. In tethered sliding, the CRMs-TFs complex forms nonspecific contacts with DNA via dynamic loops and then slide along DNA towards promoter without dissociation. In tethered binding-sliding-unbinding, the CRMs-TFs performs several cycles of nonspecific binding-sliding-unbinding before finding the promoter. Elastic and entropic energy barriers associated with the looping of DNA shape up the distribution of distances between CRMs and promoters. The combinatorial regulation of TFs in eukaryotes has evolved to overcome the looping energy barrier.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Alberts, B. 2002. Molecular biology of the cell. Garland Science, New York.

2. Ptashne, M. 1986. A genetic switch: gene control and phage [lambda]. Cell Press; Blackwell Scientific Publications, Cambridge, Mass.; Palo Alto, Calif.

3. Ptashne, M. , and A. Gann . 2002. Genes & signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

4. Atkins, P. W. 1978. Physical chemistry. W.H. Freeman, San Francisco.

5. Diffusion-driven mechanisms of protein translocation on nucleic acids;1. Models and theory. Biochemistry,1981

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Are the Molecular Requirements for Protein Sliding along DNA?;The Journal of Physical Chemistry B;2021-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3