Design Principles of Lambda’s Lysis/Lysogeny Decision vis-a-vis Multiplicity of Infection

Author:

Wadhwa Dinkar

Abstract

AbstractBacteriophage lambda makes a decision between lysis and lysogeny based on the number of coinfecting phages, namely the multiplicity of infection (MoI): lysis at low MoIs; lysogeny at high MoIs. Here, by evaluating various rationally designed models on their ability a) to make the lytic decision at MoI of 1 and the lysogeny decision at MoI of 2, b) to exhibit bistability at both MoIs, and c) to perform accurately in the presence of noise, it is demonstrated that lambda’s lysis/lysogeny decision is based on three features, namely a) mutual repression, b) cooperative positive autoregulation of CI, and c) cooperative binding of the activator protein, not basal expression, triggering positive autoregulatory loop of CI. Cro and CI are sufficient to acquire the first two features. CII is required to acquire the third feature. The quasi-minimal two-protein model for the switch is justified by showing its qualitative equivalence, except for Cro repression of pRM, to the lambda’s gene regulatory network responsible for the decision. A three-protein simplified version of the lambda’s switch is shown to possess all the three design features. Bistability at MoI of 1 is responsible for lysogen stability, whereas bistability at MoI of 2 imparts stability to lytic development post-infection and especially during prophage induction.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3