Actomyosin-mediated nanostructural remodeling of the presynaptic vesicle pool by cannabinoids induces long-term depression

Author:

McFadden Maureen H.,Xu Hao,Cui Yihui,Piskorowski Rebecca A.,Leterrier Christophe,Zala DianaORCID,Venance Laurent,Chevaleyre Vivien,Lenkei ZsoltORCID

Abstract

AbstractEndo- and exocannabinoids, such as the psychoactive component of marijuana, exert their effects on brain function by inducing several forms of synaptic plasticity through the modulation of presynaptic vesicle release1-3. However, the molecular mechanisms underlying the widely expressed endocannabinoid-mediated long-term depression3 (eCB-LTD), are poorly understood. Here, we reveal that eCB-LTD depends on the contractile properties of the pre-synaptic actomyosin cytoskeleton. Preventing this contractility, both directly by inhibiting non-muscle myosin II NMII ATPase and indirectly by inhibiting the upstream Rho-associated kinase ROCK, abolished long-term, but not short-term forms of cannabinoid-induced functional plasticity in both inhibitory hippocampal and excitatory cortico-striatal synapses. Furthermore, using 3D superresolution microscopy, we find an actomyosin contractility-dependent redistribution of synaptic vesicle pools within the presynaptic compartment following cannabinoid receptor activation, leading to vesicle clustering and depletion from the pre-synaptic active zone. These results suggest that cannabinoid-induced functional plasticity is mediated by a nanoscale structural reorganization of the presynaptic compartment produced by actomyosin contraction. By introducing the contractile NMII as an important actin binding/structuring protein in the dynamic regulation of synaptic function, our results open new perspectives in the understanding of mechanisms of synaptic and cognitive function, marijuana intoxication and psychiatric pathogenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3