A planarian nidovirus expands the limits of RNA genome size

Author:

Saberi Amir,Gulyaeva Anastasia A.,Brubacher John L.,Newmark Phillip A.,Gorbalenya Alexander E.

Abstract

AbstractRNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication (albeit within a permissive environment). A 33.5-kb nidovirus has been considered close to the upper size limit for such entities; conversely, the minimal cellular DNA genome is ~200 kb. This large difference presents a daunting gap for the transition from primordial RNP to contemporary DNA-RNP-based life. Whether or not RNA viruses represent transitional steps on the road to DNA-based life, studies of larger RNA viruses advance our understanding of size constraints on RNP entities. For example, emergence of the largest previously known RNA genomes (20-34 kb in positive-stranded nidoviruses, including coronaviruses) is associated with a proofreading exoribonuclease encoded in the nidoviral open reading frame 1b (ORF1b). However, apparent constraints on the size of ORF1b, which encodes this and other key replicative enzymes, have been hypothesized to limit further expansion of viral RNA genomes. Here, we characterize a novel nidovirus (planarian secretory cell nidovirus; PSCNV) whose disproportionately large ORF1b-like region, and overall 41.1 kb genome, substantially extend the presumed limits on RNA genome size. This genome encodes a predicted 13,556-aa polyprotein in an unconventional single ORF, yet retains canonical nidoviral genome organization and expression, and key replicative domains. Our evolutionary analysis suggests that PSCNV diverged early from multi-ORF nidoviruses, and subsequently acquired additional genes, including those typical of large DNA viruses or hosts. PSCNV’s greatly expanded genome, proteomic complexity, and unique features – impressive in themselves – attest to the likelihood of still-larger RNA genomes awaiting discovery.Significance StatementRNA viruses are the only known RNA-protein (RNP) entities capable of autonomous replication. The upper genome size for such entities was assumed to be <35 kb; conversely, the minimal cellular DNA genome is ~200 kb. This large difference presents a daunting gap for the proposed evolution of contemporary DNA-RNP-based life from primordial RNP entities. Here, we describe a nidovirus from planarians, whose 41.1 kb genome is 23% larger than the largest known of RNA virus. The planarian secretory cell nidovirus has broken apparent constraints on the size of the genomic subregion that encodes core replication machinery, and has acquired genes not previously observed in RNA viruses. This virus challenges and advances our understanding of the limits to RNA genome size.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3