A Whole-Genome Approach Discovers Novel Genetic and Non-Genetic Variance Components Modulated by Lifestyle for Cardiovascular Health

Author:

Zhou Xuan,van der Werf Julius,Carson-Chahhoud Kristin,Ni Guiyan,McGrath John,Hyppönen Elina,Lee S. Hong

Abstract

AbstractBoth genetic and non-genetic factors can predispose individuals to cardiovascular risk. Finding ways to alter these predispositions is important for cardiovascular disease (CVD) prevention. Here, we use a novel whole-genome framework to estimate genetic and non-genetic effects on—hence their predispositions to—cardiovascular risk and determine whether they vary with respect to lifestyle factors. We performed analyses on the Atherosclerosis Risk in Communities Study (ARIC, N=6,896-7,180) and validated findings using the UK Biobank (UKBB, N=14,076-34,538). Cardiovascular risk was measured using 23 traits in the ARIC and eight traits in the UKBB, such as body mass index (BMI), resting heart rate, white blood cell count and blood pressure; and lifestyle factors included information on physical activity, smoking, alcohol consumption and dietary intake. Physical activity altered both genetic and non-genetic effects on heart rate and BMI, genetic effects on HDL cholesterol level, and non-genetic effects on waist-to-hip ratio. Alcohol consumption altered both genetic and non-genetic effects on BMI, while smoking altered non-genetic effects on heart rate, pulse pressure, and white blood cell count. In addition, saturated fat intake modified genetic effects on BMI, and total daily energy intake modified non-genetic effects on waist-to-hip ratio. These results highlight the relevance of lifestyle changes for CVD prevention. We also stratified individuals according to their genetic predispositions and showed notable differences in the effects of lifestyle on cardiovascular risk across stratified groups, implying the need for individualizing lifestyle changes for CVD prevention. Finally, we showed that neglecting lifestyle modulation of genetic and non-genetic effects will on average reduce SNP heritability estimates of cardiovascular traits by a small yet significant amount, primarily owing to overestimation of residual variance. Thus, current SNP heritability estimates for cardiovascular traits, which commonly do not consider modulating effects of lifestyle covariates, are likely underestimated.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3