Colony-like Protocell Superstructures

Author:

Spustova KarolinaORCID,Katke Chinmay,Pedrueza Villalmanzo Esteban,Ryskulov Ruslan,Kaplan C. NadirORCID,Gözen IrepORCID

Abstract

AbstractWe report the formation, growth, and dynamics of model protocell superstructures on solid surfaces, resembling single cell colonies. These structures, consisting of several layers of lipidic compartments enveloped in a dome-shaped outer lipid bilayer, emerged as a result of spontaneous shape transformation of lipid agglomerates deposited on thin film aluminum surfaces. Collective protocell structures were observed to be mechanically more stable compared to isolated spherical compartments. We show that the model colonies encapsulate DNA and accommodate non-enzymatic, strand displacement DNA reactions. The membrane envelope is able to disassemble and expose individual daughter protocells, which can migrate and attach via nano-tethers to distant surface locations, while maintaining their encapsulated contents. Some colonies feature ‘exo-compartments’, which spontaneously extend out of the enveloping bilayer, internalize DNA, and merge again with the superstructure. A continuum elastohydrodynamic theory that we developed reveals that the subcompartment formation must be governed by attractive van der Waals (vdW) interactions between the membrane and surface. The balance between membrane bending and vdW interactions yields a critical length scale of 273 nm, above which the membrane invaginations can form subcompartments. The findings support our hypotheses that in extension of the ‘lipid world hypothesis’, protocells may have existed in the form of colonies, potentially benefiting from the increased mechanical stability provided by a superstructure.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

1. Ganti, T. , The Principles of Life. Oxford University Press UK: 2003.

2. Investigating Prebiotic Protocells for A Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective;Life (Basel, Switzerland),2019

3. Protocells programmed through artificial reaction networks;Chemical Science,2020

4. Current Ideas about Prebiological Compartmentalization;Life (Basel, Switzerland),2015

5. Thompson, D. A. W. , On growth and form. New ed. ed.; University Press ;: Cambridge :, 1945.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3