Abstract
ABSTRACTTransfer RNA (tRNA) variants that alter the genetic code increase protein diversity and have many applications in synthetic biology. Since the tRNA variants can cause a loss of proteostasis, regulating their expression is necessary to achieve high levels of novel protein. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II) transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA. Here, we show that tRNA expression is repressed by overlapping transcription from an adjacent RNAP II promoter. Regulating the expression of the RNAP II promoter allows inverse regulation of the tRNA. Placing either Gal4 or TetR-VP16 activated promoters downstream of a mistranslating tRNASer variant that mis-incorporates serine at proline codons in Saccharomyces cerevisiae allows mistranslation at a level not otherwise possible because of the toxicity of the unregulated tRNA. Using this inducible tRNA system, we explore the proteotoxic effects of mistranslation on yeast cells. High levels of mistranslation cause cells to arrest in G1 phase. These cells are impermeable to propidium iodide, yet growth is not restored upon repressing tRNA expression. High levels of mistranslation increase cell size and alter cell morphology. This regulatable tRNA expression system can be applied to study how native tRNAs and tRNA variants affect the proteome and other biological processes. Variations of this inducible tRNA system should be applicable to other eukaryotic cell types.
Publisher
Cold Spring Harbor Laboratory
Reference59 articles.
1. [Duplicating Mechanism for Peptide Chain and Nucleic Acid Synthesis];Enzymologia,1952
2. On Protein Synthesis;Symp. Soc. Exp. Biol,1958
3. General Nature of the Genetic Code for Proteins
4. RNA codewords and protein synthesis, VII. On the general nature of the RNA code.
5. Transfer RNAs: Diversity in Form and Function;RNA Biol,2020
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献