Characterization of Cervical-Cranial Muscle Network in Correlation with Vocal Features

Author:

O’Keeffe Rory,Shirazi Seyed YahyaORCID,Mehrdad SarmadORCID,Crosby Tyler,Johnson Aaron M.,Atashzar S. FarokhORCID

Abstract

AbstractObjective evaluation of physiological responses using non-invasive methods has attracted great interest regarding the assessment of vocal performance and disorders. This paper, for the first time, demonstrates that the topographical features of the cervical-cranial intermuscular coherence network generated using surface electromyography (sEMG) have a strong potential for detecting subtle changes in vocal performance. For this purpose, in this paper, 12 sEMG signals were collected from six cervical and cranial muscles bilaterally. Data were collected from four subjects without a history of a voice disorder performing a series of vocal tasks. The vocal tasks were varied phonation (an /a/ sustained for the maximal duration with combinations of two levels of loudness and two levels of pitch), a pitch glide from low to high, singing a familiar song, spontaneous speech, and reading with different loudness levels. The varied phonation tasks showed the median degree, and weighted clustering coefficient of the coherence-based intermuscular network ascends monotonically, with a high effect size (|rrb| = 0.52). The set of tasks, including pitch glide, singing, and speech, was significantly distinguishable using the network features as both degree and weighted clustering coefficient had a very high effect size (|rrb| > 0.83) across these tasks. Also, pitch glide has the highest degree and weighted clustering coefficient among all tasks (degree > 0.6, weighted clustering coefficient > 0.6). Spectrotemporal features performed far less effective than the proposed functional muscle network metrics to differentiate the vocal tasks. The highest effect size for spectrotemporal features was only |rrb| = 0.19. In this paper, for the first time, the power of a cervical-cranial muscle network has been demonstrated as a neurophysiological window to vocal performance. The results also shed light on the tasks with the highest network involvement, which may be potentially used in monitoring vocal disorders and tracking rehabilitation progress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3