Abstract
What are the spatial and temporal scales of brainwide neuronal activity, and how do activities at different scales interact? We used SCAPE microscopy to image a large fraction of the central brain of adult Drosophila melanogaster with high spatiotemporal resolution while flies engaged in a variety of behaviors, including running, grooming and flailing. This revealed neural representations of behavior on multiple spatial and temporal scales. The activity of most neurons across the brain correlated (or, in some cases, anticorrelated) with running and flailing over timescales that ranged from seconds to almost a minute. Grooming elicited a much weaker global response. Although these behaviors accounted for a large fraction of neural activity, residual activity not directly correlated with behavior was high dimensional. Many dimensions of the residual activity reflect the activity of small clusters of spatially organized neurons that may correspond to genetically defined cell types. These clusters participate in the global dynamics, indicating that neural activity reflects a combination of local and broadly distributed components. This suggests that microcircuits with highly specified functions are provided with knowledge of the larger context in which they operate, conferring a useful balance of specificity and flexibility.
Publisher
Cold Spring Harbor Laboratory
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献