Genome-wide transcriptional profiling uncovers a similar oligodendrocyte-related transcriptional response to acute and chronic alcohol drinking in the amygdala

Author:

Narendra Sharvari,Klengel Claudia,Hamzeh Bilal,Patel Drasti,Otten Joy,Lardenoije Roy,Newman Emily L.,Miczek Klaus A.,Klengel Torsten,Ressler Kerry J.,Suh Junghyup

Abstract

AbstractAlcohol intake progressively increases after prolonged consumption of alcohol, but relatively few new therapeutics targeting development of alcohol use disorder (AUD) have been validated. Here, we conducted a genome-wide RNA-sequencing (RNA-seq) analysis in mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, a brain area previously implicated in alcohol drinking and seeking, demonstrating distinct gene expression patterns and canonical pathways induced by both acute and chronic intake. Surprisingly, both drinking modes triggered similar transcriptional changes, including up-regulation of ribosome-related/translational pathways and myelination pathways, and down-regulation of chromatin binding and histone modification. Notably, multiple genes that were significantly regulated in mouse amygdala with alcohol drinking, including Atp2b1, Slc4a7, Nfkb1, Nts, and Hdac2, among others had previously been associated with human AUD via GWAS or other genomic studies. In addition, analyses of hub genes and upstream regulatory pathways predicted that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and oligodendrocyte-related transcriptional factor, Sox17.Overall, our results suggest that the transcriptional landscape in the central and basolateral subnuclei of the amygdala is sensitive to voluntary alcohol drinking. They provide a unique resource of gene expression data for future translational studies examining transcriptional mechanisms underlying the development of AUD due to alcohol consumption.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3