Targeted biallelic integration of an inducible Caspase 9 suicide gene for safer cellular therapies prevents development of drug-resistant escapees in human iPSCs

Author:

Wunderlich Stephanie,Haase Alexandra,Merkert Sylvia,Jahn Kirsten,Deest Maximillian,Glage Silke,Korte Wilhelm,Martens Andreas,Kirschning Andreas,Zeug AndreORCID,Ponimaskin Evgeni,Goehring Gudrun,Ackermann Mania,Lachmann Nico,Moritz Thomas,Zweigerdt Robert,Martin Ulrich

Abstract

AbstractDrug-inducible suicide systems may help to minimize risks of cellular therapies due to the tumor forming potential of human induced pluripotent stem cells (hiPSCs). Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed that showed elimination or silencing of the transgene.We have introduced a drug-inducible Caspase9 suicide system (iCASP9) into the AAVS1 safe harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. In mice, drug treatment generally led to rapid elimination of teratomas, but individual animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ~ 3×10-8. Transgene elimination, presumably via Loss of Heterozygosity (LoH), or methylation of the CAG promoter but not methylation of the ppp1r12c locus were identified as underlying mechanisms. In contrast, we never observed any escapees from biallelic iCASP9 hiPSCs, even after treatment of up to 0.8 billion hiPSCs.In conclusion, biallelic integration of an iCASP9 system in the AAVS1 locus may substantially contribute to the safety level of iPSC-based therapies, which should be calculated by relating clonal escapee frequencies to the cell number in tumors of a size that is readily detectable during routine screening procedures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3