An ultra-low frequency spike timing dependent plasticity-based approach for treating alcohol use disorder

Author:

Asp Anders J.ORCID,Boschen Suelen LucioORCID,Lujan J. LuisORCID

Abstract

AbstractAlcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S. alone. The effects of alcohol consumption are expected to increase significantly during the COVID-19 pandemic, with alcohol sales increased by approximately 54%, potentially exacerbating health concerns and risk-taking behaviors. Unfortunately, existing pharmacological and behavioral therapies for AUD have historically been associated with poor success rates, with approximately 40% of individuals relapsing within three years of treatment.Pre-clinical studies have shown that chronic alcohol consumption leads to significant changes in synaptic function within the dorsal medial striatum (DMS), one of the brain regions associated with AUD and responsible for mediating goal-directed behavior. Specifically, chronic alcohol consumption has been associated with hyperactivity of dopamine receptor 1 (D1) medium spiny neurons (MSN) and hypoactivity of dopamine receptor 2 (D1) MSNs within the DMS. Optogenetic, chemogenetic, and transgenic approaches have demonstrated that reducing the D1/D2 MSN signaling imbalance decreases alcohol self-administration in rodent models of AUD. However, these approaches cannot be studied clinically at this time.Here, we present an electrical stimulation alternative that uses ultra-low (<=1Hz) frequency (ULF) spike-timing dependent plasticity (STDP) to reduce DMS D1/D2 MSN signaling imbalances by stimulating D1-MSN afferents into the GPi and ACC glutamatergic projections to the DMS in a time-locked stimulation sequence. Our data suggest that GPi/ACC ULF-STDP selectively decreases DMS D1-MSN hyperactivity leading to reduced alcohol consumption without evoking undesired affective behaviors in a two-bottle choice mouse model of AUD.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3