A Computational Growth Framework for Biological Tissues: Application to Growth of Aortic Root Aneurysm Repaired by the V-shape Surgery

Author:

Dong Hai,Liu Minliang,Qin Tongran,Liang Liang,Ziganshin Bulat,Ellauzi Hesham,Zafar Mohammad,Jang Sophie,Elefteriades John,Sun Wei,Gleason Rudolph L.

Abstract

AbstractAscending aortic aneurysms (AsAA) often include the dilatation of sinotubular junction (STJ) which usually leads to aortic insufficiency. The novel surgery of the V-shape resection of the noncoronary sinus, for treatment of AsAA with root ectasia, has been shown to be a simpler procedure compared to traditional surgeries. Our previous study showed that the repaired aortic root aneurysms grew after the surgery. In this study, we developed a novel computational growth framework to model the growth of the aortic root repaired by the V-shape surgery. Specifically, the unified-fiber-distribution (UFD) model was applied to describe the hyperelastic deformation of the aortic tissue. A novel kinematic growth evolution law was proposed based on existing observations that the growth rate is linearly dependent on the wall stress. Moreover, we also obtained patient-specific geometries of the repaired aortic root post-surgery at two follow-up time points (Post1 and Post2) for 5 patients, based on clinical CT images. The novel computational growth framework was implemented into the Abaqus UMAT user subroutine and applied to model the growth of the aortic root from Post1 to Post2. Patient-specific growth parameters were obtained by an optimization procedure. The predicted geometry and stress of the aortic root at Post2 agree well with the in vivo results. The novel computational growth framework and the optimized growth parameters could be applied to predict the growth of repaired aortic root aneurysms for new patients and to optimize repair strategies for AsAA.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3