Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation

Author:

Seydoux Claire,Storti Mattia,Giovagnetti Vasco,Matuszyńska Anna,Guglielmino Erika,Zhao Xue,Giustini Cécile,Pan Yufang,Angulo Jhoanell,Ruban Alexander V.,Hu Hanhua,Bailleul Benjamin,Courtois Florence,Allorent Guillaume,Finazzi Giovanni

Abstract

AbstractDiatoms are amongst the most successful clades of oceanic phytoplankton, significantly contributing to photosynthesis on Earth. Their ecological success likely stems from their ability to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity of via Non Photochemical Quenching (NPQ). While the molecular effectors of this process, as well as the role of the Proton Motive Force (PMF) in its regulation are known, the putative regulators of the PET/PMF relationship in diatoms remain unidentified. Here, we demonstrate that the H+/K+ antiporter KEA3 is the main regulator of the coupling between PMF and PET in the model diatom Phaeodactylum tricornutum. By controlling the PMF, it modulates NPQ responses at the onset of illumination, during transients and in steady state conditions. Under intermittent light KEA3 absence results in reduced fitness. Using a parsimonious model including only two components, KEA3 and the diadinoxanthin de-epoxidase, we can describe most of the feedback loops observed between PET and NPQ. This two-components regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory Ca2+-binding domain in KEA3 that controls its activity. This circuit is likely finely tuned by the NPQ effector proteins LHCX, providing diatoms with the required flexibility to thrive in different ocean provinces.One sentence summaryThe author(s) responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plcell/pages/General-Instructions) is Giovanni Finazzi.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3