Development of spontaneous firing of fusiform neurons from the dorsal cochlear nucleus of mice occurs after hearing onset

Author:

Benites Nikollas M.,Rodrigues Beatriz,Silveira Carlos H.,Leão Ricardo M.

Abstract

AbstractThe dorsal cochlear nucleus (DCN) in the auditory brainstem integrates auditory and somatosensory information. Mature fusiform neurons express two qualitative intrinsic states in equal proportions: quiet, with no spontaneous regular action potential firing, or active, with regular spontaneous action potential firing. However, how these firing states and other electrophysiological properties of fusiform neurons develop during early postnatal days to adulthood is not known. Thus, we recorded fusiform neurons from mice from P4 to P21 and analyzed their electrophysiological properties. In the pre-hearing phase (P4-P13), we found that fusiform neurons are mostly quiet, with the active state emerging after hearing onset at P14. Subthreshold properties present more variations before hearing onset, while action potential properties vary more after P14, developing bigger, shorter, and faster action potentials. Interestingly, the activity threshold is more depolarized in pre-hearing cells suggesting that persistent sodium current (INaP) increases its expression after hearing. In fact, INaP increases its expression after hearing, accordingly with the development of active neurons. Thus, we suggest that the post-hearing expression of INaP creates the active state of the fusiform neuron. At the same time, other changes refine the passive membrane properties and increase the speed of action potential firing of fusiform neurons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3