Proteome signatures of reductive stress cardiomyopathy

Author:

Sunny Sini,David Cynthia L.,Parsawar Krishna,Jones Dean P.,Rajasekaran Namakkal S.

Abstract

AbstractNuclear factor erythroid 2-related factor 2 (NRF2), a redox sensor, is vital for cellular redox homeostasis. We reported that transgenic mice expressing constitutively active Nrf2 (CaNrf2-TG) exhibit reductive stress (RS). In this study, we identified novel protein biomarkers for RS-induced cardiomyopathy using Tandem Mass Tag (TMT) proteomic analysis in heart tissues of TG (CaNrf2-TG) and non-transgenic (NTg) mice at 6-7 months of age (N= 4/group). A total of 1105 proteins were extracted from 22544 spectra. Of note, about 560 proteins were differentially expressed in TG vs. NTg hearts, indicating a global impact of RS on myocardial proteome. From a closer analysis of the proteome datasets, we identified over 32 proteins that were significantly altered in response to RS. Among these, 20 were upregulated and 12 were downregulated in the hearts of TG vs. NTg mice, suggesting that these proteins could be putative signatures of RS. Scaffold analysis revealed a clear distinction between TG vs NTg hearts. Of note, we observed several proteins with redox (#185; cysteine residues), NEM-adducts (#81), methionine-loss (#21) and acetylation (#1) modifications in TG vs. NTg hearts due to chronic RS. The majority of the differentially expressed proteins (DEPs) that are significantly altered in RS mice were found to be involved in stress related pathways such as antioxidants, NADPH, protein quality control (PQC), etc. Interestingly, proteins that were involved in mitochondrial respiration, lipophagy and cardiac rhythm were dramatically decreased in TG hearts. Of note, we identified the glutathione family of proteins as the significantly changed subset of the proteome in TG heart. Surprisingly, our comparative analysis of NGS based transcriptome and TMT-proteome indicated ∼50% of the altered proteins in TG myocardium was found to be negatively correlated with their transcript levels. Modifications at cysteine/NEM-adducts (redox), methionine or lysine residues in multiple proteins in response to chronic RS might be associated with impaired PQC mechanisms, thus causing pathological cardiac remodeling. Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3