Transcriptional and translational regulation of pathogenesis in Alzheimer’s disease model mice

Author:

Eastman Guillermo,Sharlow Elizabeth R.,Lazo John S.,Bloom George S.ORCID,Sotelo-Silveira José R.

Abstract

ABSTRACTBackgroundDefining the cellular mechanisms that drive Alzheimer’s disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and the ensuing periods of steadily declining cognition. Previous studies have emphasized changes in transcriptional regulation, but not translational regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD.ObjectiveTo identify genes whose expression might be regulated at the transcriptional, and especially at the translational levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2-/-) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling).MethodsIdentical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptional and translational levels separately, and also at the translational efficiency level. Regulated genes were functionally evaluated by gene ontology tools.ResultsCompared to WT mice, AD model mice had similar levels of transcriptional regulation, but displayed differences in translational regulation. A specific microglial signature associated with early stages of Aβ accumulation was up-regulated at both transcriptome and translatome levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to APP metabolism associated with neurotoxicity and neuroprotection.ConclusionThis work represents the first genome-wide study of brain translational regulation in animal models of AD, and provides evidence of a tight and early translational regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3