Leveraging genomic diversity for discovery in an EHR-linked biobank: the UCLA ATLAS Community Health Initiative

Author:

Johnson RuthORCID,Ding Yi,Venkateswaran Vidhya,Bhattacharya ArjunORCID,Chiu Alec,Schwarz Tommer,Freund Malika,Zhan Lingyu,Burch Kathryn S.ORCID,Caggiano Christa,Hill BrianORCID,Rakocz Nadav,Balliu Brunilda,Sul Jae Hoon,Zaitlen Noah,Arboleda Valerie A.ORCID,Halperin Eran,Sankararaman Sriram,Butte Manish J.ORCID,Lajonchere Clara,Geschwind Daniel H.,Pasaniuc Bogdan, ,

Abstract

AbstractLarge medical centers located in urban areas such as Los Angeles care for a diverse patient population and offer the potential to study the interplay between genomic ancestry and social determinants of health within a single medical system. Here, we introduce the UCLA ATLAS Community Health Initiative – a biobank of genomic data linked with de-identified electronic health records (EHRs) of UCLA Health patients. We leverage the unique genomic diversity of the patient population in ATLAS to explore the interplay between self-reported race/ethnicity and genetic ancestry within a disease context using phenotypes extracted from the EHR. First, we identify an extensive amount of continental and subcontinental genomic diversity within the ATLAS data that is consistent with the global diversity of Los Angeles; this includes clusters of ATLAS individuals corresponding to individuals with Korean, Japanese, Filipino, and Middle Eastern genomic ancestries. Most importantly, we find that common diseases and traits stratify across genomic ancestry clusters, thus suggesting their utility in understanding disease biology across diverse individuals. Next, we showcase the power of genetic data linked with EHR to perform ancestry-specific genome and phenome-wide scans to identify genetic factors for a variety of EHR-derived phenotypes (phecodes). For example, we find ancestry-specific associations for liver disease, and link the genetic variants with neurological and neoplastic phenotypes primarily within individuals of admixed ancestries. Overall, our results underscore the utility of studying the genomes of diverse individuals through biobank-scale genotyping efforts linked with EHR-based phenotyping.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3