Mice With Monoallelic GNAO1 Loss Exhibit Reduced Inhibitory Synaptic Input To Cerebellar Purkinje Cells

Author:

Feng HuijieORCID,Yuan YukunORCID,Williams Michael R.,Roy Alex J.,Leipprandt Jeffery,Neubig Richard R.ORCID

Abstract

AbstractGNAO1 encodes Gαo, a heterotrimeric G protein alpha subunit in the Gi/o family. In this report, we used a Gnao1 mouse model “G203R” previously described as a “gain-of-function” Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein and describe alterations in central synaptic transmission.Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared to WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin), enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. While GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is the first electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.Significance StatementThis is the first report on the electrophysiological mechanisms of a movement disorder animal model with monoallelic Gnao1 loss. This study illustrates the role of Gαo protein in regulating GABA release in mouse cerebellum. This study could also facilitate the discovery of new drugs or drug repurposing for GNAO1-associated disorders. Moreover, since GNAO1 shares pathways with other genes related to movement disorders, developing drugs for the treatment of GNAO1-associated movement disorders could further the pharmacological intervention for other monogenic movement disorders.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3