Development of a new militarily-relevant whole-body low-intensity blast model for mild and subconcussive traumatic brain injury: Examination of acute neurological and multi-organ pathological outcomes

Author:

Hellewell Sarah C.,Cernak Ibolja

Abstract

AbstractThis work describes a newly developed experimental mouse model reproducing features of blast-induced neurotrauma (BINT), induced in operationally relevant manner using a compressed air-driven shock tube. Mild BINT (smBINT) was induced by one exposure to a low-intensity blast (LIB), whereas subconcussive BINT (rscBINT) was caused by repeated exposures to LIB.To mimic an operational scenario when a soldier is standing when exposed to blast using a quadruped experimental animal (mouse), a whole-body holder was developed to position mice in a bipedal stance, face-on toward the pressure wave generated in a shock tube. This restraint avoids ‘bobble head’ movement, thus prevents tertiary blast effects, and allows administration of fast-acting inhaled anesthetics via nose cone.Using this model, we established and validated paradigms for primary blast-induced mild and repetitive traumatic brain injuries Our results showed that a single exposure to 69 kPa (10 psi) was capable of inducing smBINT, whereas three-rounds of exposure to 41 kPa (6 psi) caused rscBINT.Mice recovered rapidly from both types of BINT without prolonged neurological dysfunction. Mild superficial pathology was found predominantly in the lungs 24h after injury, with equivalent pathology after smBINT or repetitive rscBINT. The Purkinje layer of the cerebellum exhibited neuronal damage persisting up to 7d. Similar to some other models as well as clinical findings, this model reproduces blast-induced cerebellar pathology. In conclusion, this model positioning mice in a bipedal stance and facing front-on toward the shockwave provides realistic representation of operational scenarios and reproduces militarily-relevant smBINT and rscBINT in the laboratory.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3