Expert-integrated automated machine learning uncovers hemodynamic predictors in spinal cord injury

Author:

Chou AustinORCID,Torres-Espin AbelORCID,Kyritsis NikosORCID,Huie J. RussellORCID,Khatry Sarah,Funk Jeremy,Hay Jennifer,Lofgreen Andrew,Shah Rajiv,McCann Chandler,Pascual Lisa UORCID,Amorim EdilbertoORCID,Weinstein Philip RORCID,Manley Geoffrey TORCID,Dhall Sanjay SORCID,Pan Jonathan ZORCID,Bresnahan Jacqueline CORCID,Beattie Michael SORCID,Whetstone William DORCID,Ferguson Adam RORCID,

Abstract

AbstractAutomated machine learning (AutoML) is positioned to democratize artificial intelligence (AI) by reducing the amount of human input and ML expertise needed to create prediction models. However, successful translation of ML in biomedicine requires moving beyond optimizing only for prediction accuracy and towards discovering reproducible clinical and biological inferences. Here, we present a model-agnostic framework to reinforce AutoML using strategies and tools of explainable and reproducible AI, including novel metrics for performance precision and feature instability. The framework enables clinicians to interpret AutoML-generated models for clinical and biological verifiability and consequently integrate domain expertise during model development. We applied the framework towards spinal cord injury prognostication and identified a detrimental relationship between intraoperative hypertension and patient outcome. Furthermore, our analysis captured evolving clinical practices such as faster time-to-surgery and blood pressure management that affected clinical model validation. Altogether, we illustrate how augmenting AutoML for inferential reproducibility empowers biomedical discovery and builds trust in AI processes towards effective clinical integration.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Escalante, H. J. , Montes, M. , Sucar, L. E. , Mx, I. & Mx, I. Particle Swarm Model Selection. 36.

2. Feurer, M. et al. Efficient and Robust Automated Machine Learning. 9.

3. Using a Guided Machine Learning Ensemble Model to Predict Discharge Disposition following Meningioma Resection;J. Neurol. Surg. Part B Skull Base,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3