The architecture of phenotypic flexibility within a complex trait: an empirical case study using avian thermogenic performance

Author:

Stager Maria,Cheviron Zachary A.

Abstract

ABSTRACTReversible modifications to trait values can allow individuals to match their phenotypes to changing environmental conditions, a phenomenon known as phenotypic flexibility. A system’s capacity for flexibility may be determined by its underlying architecture, and these relationships can have important implications for both organismal adaptation and the evolvability of acclimatization responses. Theory provides two possible alternatives to explain the ways in which lower-level traits respond to environmental challenges and contribute to phenotypic flexibility in complex, whole-organism traits: symmorphosis predicts correspondence between structure and demand across all levels of a physiological system, while the alternative predicts that influence is concentrated in select elements of a physiological network. Here we provide a rich dataset — composed of 20 sub-organismal, physiological traits paired with whole-organism metabolic rates for 106 adult Dark-eyed Juncos (Junco hyemalis) — to explore the mechanistic basis of phenotypic flexibility in complex traits. When exposed to synthetic temperature cues, these individuals have previously been shown to increase their thermogenic capacity (Msum) and enhance their ability to maintain their body temperature in the cold. We show that the relationships among a number of the traits that contribute to Msum varied as the environmental context changed. Moreover, variation in Msum in response to temperature acclimation was correlated with only a handful of subordinate phenotypes. As a result, avian thermogenic flexibility does not appear to be a symmorphotic response. If this is generally true of complex traits, it suggests that simple and reversible modifications can significantly impact whole-organism performance, and thus that the evolution of phenotypic flexibility in a single component part could impart flexibility for the entire system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3