Abstract
AbstractThe morphology and skeleton architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features optimize light capture under low-light environments. Using micro-computed tomography scanning, we conducted a comprehensive three-dimensional (3D) assessment of small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (5 m) and mesophotic (45 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite-scale, we developed 3D simulations of light propagation based on photosynthesis-irradiance parameters. We found that corals associated with shallow morphotypes dissipated excess light through self-shading microskeletal features; while mesophotic morphotypes facilitated enhanced light absorption and photosynthesis under low-light conditions. We conclude that the mesophotic coral architecture provides a greater ability to trap solar energy and efficiently exploit the limited light conditions, and suggest that morphological modifications play a key role in the photoadaptation response to low-light.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献